

RTKP-MF-M-CC

Rotary piston dry-dial meter for cold water with flood-proof (IP68) hermetically sealed glass/copper register

The RTKP-MF-M-CC is a manifold-type rotary piston dry-dial meter for cold water.

The RTKP-MF-M-CC records the flow rate according to the volumetric measuring principle. It offers a very high measuring range, excellent measuring stability and therefore guarantees extremely precise consumption recording.

The RTKP-MF-M-CC features a very low starting flow and is permitted for all installation positions.

The meter is equipped with an 8-digit glass/copper register (IP68) and a modulator disc. This enables electronic, non-reactive scanning and is the basis for remote reading of meter data via radio with LoRaWAN® or wM-Bus (according to OMS). A combined M-Bus/pulse module is also possible.

M-Bus M-Bus LÔRaWAN

Performance characteristics at a glance

- Rotary piston dry-dial meter for any installation position (except overhead)
- Equipped with glass/copper register (IP68) as standard
- 8-digit register and modulator disc for non reactive, electronic pulse detection
- Register rotatable 355°
- Operating pressure MAP 16
- Approved in accordance with MID

Applications

 For the consumption measurement of cold and clean drinking water or service water up to 50°C

AMR options

- As standard with communication interface for EDC modules (Electronic Data Capture):
 - EDC LPWAN radio module (868 MHz) for LoRaWAN®
 - EDC wireless M-Bus radio module according to OMS standard (868 MHz), EN 13757-4
 - EDC- combined M-Bus and pulse module

Technical data					
Permanent flowrate	Q_3	m³/h	1.6	2.5	4
Comparable to permanent flowrate (EEC)	Q_n	m³/h	1	1.5	2.5
Attainable measuring range ¹	Q_3/Q_1	Ratio	250	400	400
Comparable to metrological class (EEC)	Class	-	> C-H/V	> C-H/V	> C-H/V
Overload flowrate	Q_4	m³/h	2	3.13	5
Transitional flowrate	Q_2	l/h	10	10	16
Minimum flowrate	$Q_{_1}$	l/h	6	6	10
Start-up flow rate	-	l/h	< 2	< 2	< 2
Temperature range	-	°C	0.1 - 50	0.1 - 50	0.1 - 50
Operating pressure	MAP	bar	0.3 - 16	0.3 - 16	0.3 - 16
Pulse value (modulator disc)	-	l/pulse	1	1	1
Pressure loss at Q ₃	Δρ	bar	Δ0.40	Δ0.63	Δ0.63
Mechanical environmental condition	-	-	M1	M1	M1
Climatic condition ²	-	°C	5 - 55	5 - 55	5 - 55
Flow profile sensitivity	-	-	U0/D0	U0/D0	U0/D0
Dimensions and weights:					
Nominal diameter	DN	mm	20	20	20
Thread meter G x B	-	inch	1 ½"	1 ½"	1 ½"
Width approx.	В	mm	103	103	103
Height approx.	H1	mm	157	157	157
	H2	mm	142	142	142
Weight approx.	_	kg	1.8	1.8	1.8

Weight approx.

¹ Other measuring ranges on request

² Condensation possible

Dimensions Typical error curve

Typical pressure loss curve

ZENNER International GmbH & Co. KG

D-66121 Saarbrücken | Germany

 Telefon
 +49 681 99 676-0
 E-Mail
 info@zenner.com

 Telefax
 +49 681 99 676-3100
 Internet
 www.zenner.com